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Granular labyrinth structures in confined geometries
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Pattern forming processes are abundant in nature. Here, we report on a particular pattern forming process.

Upon withdrawal of fluid from a particle-fluid dispersion in a Hele-Shaw cell, the particles are shown to be left
behind in intriguing mazelike patterns. The particles, initially being uniformly spread out in a disc, are slowly
pulled inwards and together by capillary and pressure forces. Invading air forms branching fingers, whereas the
particles are compiled into comparably narrow branches. These branches are connected in a treelike structure,
taking the form of a maze. The characteristic length scale within the structure is found to decrease with the

volume fraction of the particles and increase with the plate separation in the Hele-Shaw cell. We present a
simulator designed to simulate this phenomenon, which reproduces qualitatively and quantitatively the experi-
ments, as well as a theory that can predict the observed wavelengths.
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I. INTRODUCTION

Systems driven out of equilibrium tend to spontaneously
form patterns on length scales much larger than their indi-
vidual constituents. Complex shapes and structures emerge
in self-organized processes governed by simple rules ex-
ecuted repeatedly and in parallel across space [1]. Examples
of pattern formation in nature are numerous: dunes and
ripples in windblown sand, fracture patterns, dendritic
growth of crystals and plants, and the growth of fractal river
networks over geological time scales, to mention but a few
[2,3].

A large variety of patterns exists, yet one also finds that
seemingly unrelated processes may produce patterns with
similar characteristics [4]. The formation of diffusion limited
aggregation (DLA) clusters, for instance, is fundamentally
related to viscous fingering in consolidated porous media [5].
In order to characterize the pattern formation process, one
needs to identify the different mechanisms that govern its
behavior, and reveal the often subtle interplay between the
competing forces in the system.

In this paper we demonstrate and characterize a pattern
forming process where random, labyrinthine structures
emerge from the slow drying of fluid-grain mixtures in con-
fined geometries [6]. Experiments and simulations reveal
that the interface instability develops as a compromise be-
tween capillary forces and friction, and we present an ana-
lytic prediction of the observed characteristic length scales in
the patterns. The grain labyrinth bears visual resemblance to
patterns formed in other systems such as chemical reaction-
diffusion processes [7,8] and magnetic and dielectric fluids
under external fields [9]. Labyrinthine patterns have also
been observed in other drying processes which have been
studied experimentally [10] and using lattice models [11].

As the fluid is gradually drained from the cell, the fluid-
air interface at the perimeter of the circular disc starts to
recede. The capillary forces between the wetting fluid and
the grains gradually compile a growing layer of close-packed
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grains ahead of the interface as it moves. After an initial
transient period where a compact layer of grains is formed all
along the circular perimeter, an instability develops whereby
the fluid-grain disc is slowly invaded by fingers of air. Figure
1 shows consecutive images of this process, where one can
observe the gradual advance and splitting of fingers, result-
ing in the complex, labyrinthine pattern seen in the fully
drained cell. Unlike drying processes where individual pin-
ning plays a role [10,12,13], the finger splitting is due to a
collective jamming of the interface on a length scale larger
than the individual grains. The time sequence by which the
pattern is formed is not discernible in the final pattern. The
grains, originally uniformly distributed, have been reorga-
nized by the stretching interface into a long, thin, branching
structure of close-packed particles separated by wider paths.
Each branch is assembled from the compact layer of grains
pushed ahead by two adjoining fingers of air. For example, in
the experiment shown in Fig. 1, the initial circular perimeter
is approximately 1 m long, and the circumference of the final
cluster measures 13.3 m.

II. EXPERIMENTAL SETUP AND PROCESS

The confined geometry studied is a Hele-Shaw cell [14],
which extends 50 cm X 50 cm (see Fig. 2). The upper and
lower glass plates are 10 mm thick, which assures that they
bend very little under their own weight. By means of eight
spacers, the gap between the plates is well defined and can be
freely chosen. The cell is mounted in a frame with three

FIG. 1. (Color online) The figure shows five consecutive photos
of the experiment: four during the process (after 3, 11, 28, and 42 h)
and one after completion. Black areas are air filled, the bright areas
are either branches of compacted grains or areas with fluid above a
layer of grains, which are not yet drained. Each picture frame is
40X 40 cm.
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FIG. 2. Sketch of the experimental setup: Two 50 cm X 50 cm
X 10 mm glass plates are placed horizontally above each other with
an adjustable but well defined spacing between them. A hole drilled
through the central point of the top plate serves as the injection
point and the extraction point for fluid-particle mixture and fluid,
respectively.

adjustment screws resting on a table such that the cell can be
leveled accurately. A square “window” is cut in the table
allowing imaging from underneath where no tubes or other
equipment block the view. The upper glass plate is pressed
downwards by its own weight and by eight additional
weights that are placed directly above each of the spacers.
This is preferred to clamping the plates together because the
latter method can cause the plates to bend.

The drying or draining process that we have studied starts
from a circular disk of particle-fluid mixture between the
glass plates. The particles are heavier than the fluid and
therefore initially rest on the lower glass plate. Here we have
studied glass beads with diameter 50—100 wm, but other
particles may be used as long as they sediment out and are
wet by the fluid. We have chosen to use a 50/50% glycerol
and water mixture as fluid. The reason is that the filling of
the cell is done by injecting the fluid quickly through a cen-
tral hole in the top plate. The fluid must be viscous enough
that the particles stay in suspension until the desired size of
the disc is reached. Only then the particles should sediment
out, and in this way a uniform particle distribution is ob-
tained. Finally, a small portion of extra glass beads is added
through the tubing in order to create a small disc of diameter
2 cm below the inlet and outlet point. This prevents the air
front to sweep by the outlet prematurely during the experi-
ment.

In order to make the experiment resemble a drying pro-
cess, the system is drained through the central point at a very
low rate. The experiment typically takes two to three days to
complete. The fluid is withdrawn into a syringe which is
attached to a step motor that is set at constant speed. As the
fluid is withdrawn pressure is reduced in the fluid causing the
air-fluid interface to recede. As the process is very slow, the
motion of the interface is likely to be where it is less hin-
dered. The fluid wets the glass beads, thus the beads are
dragged along with the interface. This leads to a compaction
of grains inside of the interface and eventually the beads start
to pile on top of each other. The increased mass of the pile of
beads causes the friction to increase locally. After a short
transient we observe a compacted layer of grains along the
entire air-fluid interface. The particles are no longer just pil-
ing on top of each other but they span the entire gap between
the plates. They constitute more or less a block that has to be
moved as a whole, and friction is active against both the
bottom plate and the top plate.
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FIG. 3. (Color online) Detailed photo of a segment of the front.
The dense region of particles (bright stripe) makes up the front, and
the upper left part consists of fluid and particles spread out. Air is
outside the front on the lower right side (dark region).

At this stage the pattern formation starts. Capillary forces
pull the particles inwards and the friction holds them back.
Details follow in Sec. III, but for now observe how the pat-
tern evolves in Fig. 1. Fingers of air invade from the sides
into the disc. They roughly have the same width independent
of position within the disc and time elapsed. There is no
obvious direction of the finger growth. Upon growing, the air
fingers push beads in front of themselves and to the side. In
this way, the fluid is drained, whereas a residue of particles is
left behind. The final grain structure is simply connected in a
treelike shape. If one wishes, the grains correspond to the
hedges of a garden labyrinth and the air is the footpaths in
between.

The rightmost labyrinth structure in Fig. 1 is fully devel-
oped, which allows some immediate observations to be
made. First, remote areas of fluid like the lower segment in
the fourth panel in Fig. 1 have been drained through a long
and narrow branch of grains. It is indispensable that the pro-
cess is slow since in this case D’arcy’s law predicts an oth-
erwise large pressure drop over this long and narrow branch.
Pinch-offs or air breakthrough into the outlet tube in the
middle could otherwise occur and end the experiment pre-
maturely. Second, the mass transport during the process is
local. The branches have roughly the same width over the
disc, as do the air branches. This reflects the initial state of
evenly distributed grains.

III. MODEL DESCRIPTION OF THE RELEVANT FORCES

In order to model the system through simulations, it is
necessary to start with a model of the forces involved. The
algorithm for the simulations will be based on a statement of
balance between these forces.

Seeking a better understanding of the experimental pro-
cess described in Sec. II, it is useful to look at a closeup
photo of an air finger during displacement, see Fig. 3. In this
particular case the width of the front is roughly 20 particles.
Its motion is from the lower right to the upper left, meaning
that the front gathers mass on the upper left hand side as new
area is swept over. We observe that on this side there is some
fluctuation in the front boundary. This is not the case on the
lower right side, the surface towards air. The capillary ten-
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FIG. 4. Part of an air-suspension interface. The particles at the
interface are partially exposed to the air, and between them there is
a complex surface of constant mean curvature corresponding to the
pressure drop AP.

sion acts not only as the driving force moving the front, but
also to smooth the front. Even though the particles protrude
the meniscus a little bit locally (which they must, otherwise
no force could act on them), the meniscus is a smooth curve
on the scale of many particles.

There are some possible candidates for dominating forces
or effects in the problem: surface tension, viscous forces,
inertia effects, shear forces in the packing, individual pinning
of grains, and friction against the glass plates. Due to the low
flow rate, the viscous forces that govern viscous fingering
processes are negligible in this case. The same goes for in-
ertia effects. Further, most of the time, the motion of the
front implies elongating the front. If shearing were to con-
tribute significantly to resistance against motion it would be
expected to be due to dilatancy, but the elongation counter-
acts this effect. Individual pinning of particles will occur
when the plate spacing is close to the size of the largest
grains. We have chosen to keep the spacing large enough that
this does not happen in this study. This leaves us with two
prominent candidates in addition to the pressure forces: fric-
tion and surface tension. The correctness of these estimates
has a posteriori been confirmed by implementing them into a
simulator.

A. Capillary forces

We consider a front segment that is short enough to have
a well defined curvature R, in the in-plane direction, as
shown in Fig. 4. This segment corresponds to part of the
front shown in Fig. 3. It consists of both fluid and particles,
some of which reside on the fluid-air interface. We imagine
that the pressure is increased so as to create a displacement
as illustrated in Fig. 4. In order to identify the forces acting
across this interface we consider the work done by the pres-
sure difference AP across it, or, more precisely, the work
done by the air on the rest of the system. In the quasistatic
limit, where we can neglect viscous forces, this work will go
into increasing the surface energies and displacing the par-
ticle packing. It may be written

APSV=y3A;+Ay,0A,+ Ay, 0A, +adV, (1)

where o is the average stress acting through the particle
packing—or rather the component o, of this stress—7v is the
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air-liquid free energy per area (i.e., the surface tension), Ay,
is the difference between the air-solid and liquid-solid free
energy per area at the wall, Ay, is the corresponding quantity
for the particle material, A,, and A, are the wall and particle
surfaces exposed to the air.

In order to interpret the first two right hand side terms of
Eq. (1) we now introduce the specific surface areas a(AP)
=A;/(AzAOR,) and a,(AP)=A,/(AzA®R,). These quanti-
ties depend on AP since an increase in the pressure will drive
the fluid interface into the pores between the particles and
change both A, and A,. Writing A;=a(AP)AzA®R, we see
that the area change

SA ;= AzA®(a SR + R,a) (2)

has two terms. The first term corresponds to the displacement
of the front as a whole the distance R, and the second to the
displacement of the interface into the pores. In fact, we may
imagine that the total displacement process is split into two
steps: In the first step R.— R.+ R at fixed a and a,,, and the
corresponding volume and area changes are

8V=AzAGR, SR,
8A;=aAzA® R,

8A,=a,AzAOR. (3)

In the second step there is no grain displacement, i.e., R, is
fixed, and the fluid interfaces displace a characteristic dis-
tance Ox into the pores. Since the pore size is much smaller
than R, we are free to assume that dx << 6R,.. The correspond-
ing volume and area changes are OV’ éx, 5Ajl
=0aAzAOR,, and 5A )= da,AzAOR,. In other words, the first
and second steps correspond to the large and small scale
displacements, respectively. The work corresponding to the
second step is

APV’ = ydA; + Ay, 04, (4)

Subtracting Eq. (4) from Eq. (1) we get the work done by the
first step,

APSV = ydA;+ Ay,0A,+ Ay, 04, + odV, (5)

where 6A,,=2AOR_.SR. Since 8V'/ 8V~ &x/ SR<1, we con-

clude that APSV' <APSV and that the work of the second
step may be ignored altogether. This means that, in this ap-
proximation, the entire work is in fact given by Eq. (5).

Dividing Eq. (5) through by &V and using the fact that
SV =6V as well as the expressions for OA; and A, gives us

AP (a+a,cosa,)y . Ziyw’ ©)
. b4

where we have also used Young’s law Avy,=7y cos @, where
@), is the contact angle on the particle surface, to get rid of
Av,. This is the result we require.

The last constant term of Eq. (6) we may absorb in AP as
it will not affect the dynamics of our system. The (a
+a, cos ) prefactor is of the order 1, and may be absorbed
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FIG. 5. Sketch of front section of particles between two
plates.

in 7y to give a new effective surface tension y’. In the mod-
eling, however, we shall simply make the replacement (a
+a, cos a,) — 1, thus effectively introducing an uncertainty
in the surface tension. Note, however, that our approximation
will tend to be a good one when particles are barely exposed
(a,~0) and the interface is locally flat (a=~1). The photo in
Fig. 3 indicates that the particles are not strongly exposed.

B. Friction in the particle front

Having established a capillary force law we now formu-
late the interface particle stress o in terms of friction forces.
The front, having been compacted to some extent into the
shape sketched in Fig. 5, consists of many particles in the
two in-plane directions and several particles in the vertical
direction. Thus on the mesoscopic scale a Janssen descrip-
tion of the stress in the packing is a good approximation to
the actual stress tensor [15].

There, the free surface to the left of the front pushes the
front inwards (to the right). The basic idea is that if friction is
overcome, motion of the front results.

Taking the principal axes of the stress tensor to lay paral-
lel with the coordinate axes gives

0. = KOy, (7)

where « is Janssen’s proportionality constant. The stress in
the y direction is assumed equal to that in the x direction,
however, this stress does not enter into the subsequently de-
scribed equations of motion. We ignore any z dependence of
o and assume translational symmetry in the y direction, from
which it follows that o,,=0,,(x), and we make the identifi-
cation o,,=0 with the notation above.

The force balance equation of a vertical differential slice
in the x direction is

[o(x) — o(x + dx)]JAyAz — po_.(x)2Aydx — gpAyAzdxp =0,
)

when friction is fully mobilized. Here p is the mass density
of the particle packing. Replacing the o, with the help of
Eq. (7) and some manipulation gives

do(x) B 2 wro(x)
== — 8P

dx Az ©)

This differential equation is valid for the block of particles
between the open boundary at x=0 and the innermost point,
x=L, where the packing spans the gap between the planes. At
x=L we assume the block to be held back by the excess mass
inside, modeled as a triangle,
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FIG. 6. Five points on the front are shown. For each point the
direction normal to the front is drawn as a vector of length corre-
sponding to front thickness L. The orientation, the curvature, and
the front thickness change after a move. For clarity in the drawing
the displacement in a single move is exaggerated.

Ay(Az)?
mu:m, (10)
2 tan 6

and the force balance at x=L,
o(L)AzAy =m,gu. (11)
The solution of Eq. (9) becomes

_gpAzZ| | Kp Z,uK[L—x]) ~
ol(x) = B H_tan 6+ l}exp<—AZ 1].
(12)

We emphasize that this is the limiting case where friction is
fully mobilized, which means that the stress o(x=0) is the
limiting stress on the open boundary. Higher stress will lead
to motion.

C. Simulations

In the simulations the air-liquid pressure force is in-
creased until somewhere along the interface it exceeds the
sum of the local capillary and friction forces. The front is
then moved a tiny step in the normal direction at that point,
and the procedure is repeated. In other words, the point on
the interface, which is displaced, minimizes

Y
+—. 13
T+ o (13)

c

The model is based on a one-dimensional representation of
the interface, where thousands of consecutive points dis-
cretize the perimeter of the fluid and grain area. In Fig. 6(a)
five of these points are shown at some typical situation. Mo-
tion is from the air side towards the fluid side. Technically
speaking, the fundamental information that needs to be
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stored at each point is the co-ordinates and the accumulated
particle mass associated with each respective point. In prin-
ciple all other quantities may be derived from these, as will
be explained in the following.

The accumulated particle mass in a segment of the front is
for convenience handled as a volume, the total volume of
fluid and particles, which is filled by a dense packing of
these particles. Numerically this corresponds to normalizing
the particle fraction to one in the dense region within the
front. We denote the volume of the point with index i by V,.
Further, we denote the distance between neighboring points,
which is easily calculated, by /;;, where i and j are neighbors.
The plate separation Az is fixed and thus the width of the
front in a point can be calculated. For point 3 in Fig. 6(a), the
front width becomes

Vs

= 14
AZ(123/2 + 134/2) ( )

Ly
where the front length associated with the point is the sum of
the two half distances to its two neighbors. The resulting
front width is illustrated with a vector pointing towards the
fluid side in the figure. The orientation of the vectors is al-
ways normal to the front. In the case of point 3, one sees how
the vector is aligned along the dashed line. This line divides
the angle £234=2p exactly in two equal angles 3.

The orientation is only dependent on the point itself and
its two nearest neighbors. Also in the case of curvature, we
choose to evaluate it locally, only using the nearest neigh-
bors. The curvature k. is approximated by, again for point 3,

1 728

— = (15)
RC,3 123/2 + 134/2

Kc,3 =
Recall that the curvature, equal to the inverse radius of cur-
vature, is a change in tangential orientation (angle change)
per arc length. The approximation consists in using the two
straight line segments as a measure of the arc length.

The information calculated so far suffices to evaluate all
points in a given configuration and to select the point which
yields first. Once selected, the point in question is moved a
tiny step inwards, normal to the front. In this study we have
chosen this step to be As=3 wm, which should be compared
with the initial spatial resolution of the line: neighbor point
distance [;,;;=1.5 mm. The latter should be small enough to
resolve the final structure of the pattern. The displacement
step was chosen to be sufficiently small compared with /;;; in
the sense that the measured results did not depend on its
value. Some tests were performed to check for this.

The moved point gathers volume (or mass or particles,
depending on the perspective) on its way. Although the front
is represented as a line, we keep in mind the fact that it is the
inner side of the actual front that gathers particles. The in-
crease in volume, again for point 3 in Fig. 6, becomes

l l
Ay = —Proca As(2+ﬁ), (16)
1- ¢Iocal 2 2

where ¢, is the local volume fraction associated with the
position of the point, to be defined below. Note that when
point 3 is moved to give the situation in Fig. 6(b), only its
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FIG. 7. Snapshot of a section of a simulation. The thicker line
towards the air side (white area) is the numerically stored line. A
branch of grains is formed when the inside of the front comes in
contact with a counterpart segment.

own mass is changed. However, the front lengths of points 2,
3, and 4 are changed, from which the front widths L of these
points must be recalculated. The same is true for orientation
and curvature of these three points.

The simulation is implemented with an average spatial
volume fraction of mass that represents the filling of grains
in the Hele-Shaw cell. Disorder is included by locally allow-
ing the volume fraction of mass to fluctuate around the av-
erage value. To estimate the local fraction, the average frac-
tion is multiplied by a number within /=(1-¢, 1 +¢€). In this
study we chose to place a 120 X 120 virtual lattice of random
numbers, which are elements in /, on top of the initial disk.
The number of a given point in space is then taken as the
linear interpolation between its four nearest lattice points.

In order to maintain a constant spatial resolution, new
points are added to the interface as it stretches. Numerically,
a limit is set at 1.1X1/;. Whenever two neighbors come
further apart a new point is inserted in between, equally dis-
tant from each point. Along the line of possible points of
equal distance, the one point is chosen which conserves the
curvature. Generally, this can be done exactly only for the
left neighbor or the right neighbor separately. In the case of
differing positions, when calculated for each of the sides
independently, a middle position is used.

Volume must be preserved upon insertion of new points.
Volume from the two neighbors is transferred to the new
point. Imagine a point number 6 being added to the chain in
Fig. 6 between points 2 and 3. The volume transfer from
points 2 and 3 to 6 then becomes
1 Valy

V6:—AV2—AV3:51 +l
12 23

1 Vsly

(17)

Now, the front thickness L, the orientation, and the curvature
are calculated anew for points 2, 3, and 6.

The process of moving points and gathering mass contin-
ues as long as there are points left that are allowed to move.
Points whose extended front of mass comes in mutual con-
tact are immobilized as this represents the formation of a
branch of close-packed grains. Figure 7 shows a section of
the front during the formation of a branch. The white area is
air and the shaded area is fluid and particles. Note how the
small pocket of isolated fluid and particles within the particle
branch resembles the experimental situation. This area will
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(d) t = 6 min (e) t =8 min

be drained later when all easier parts are drained, and the
pressure difference between fluid and air increases.

IV. THEORETICAL PREDICTION
OF THE CHARACTERISTIC
LENGTH SCALE

The theoretical prediction for the characteristic width of
the fingers will follow from a force balance argument where
we assume that the fingers are moving straight and have a tip
of circular shape (see Fig. 8). To start we show that the
notion of steadily advancing fronts of such circular shape
and constant layer width L is consistent with the process of
mass accumulation in our system.

A. Mass accumulation along the front
and the resulting interface width

Consider the steady state situation illustrated in Fig. 9,
where the circular front moves along at velocity u through
the medium of solid fraction ¢p=< 1. The packing fraction ¢ is
here defined as 1 for the compact grains in the branches. A
priori, L should be considered a function of the angle ©.

FIG. 9. Model of the fluid-air interface as a circular front behind
a close-packed region of width L. The finger defined by this front
moves with velocity u. The angle from the center of the circle to a
given particle on the interface changes from O to ®+ 60 during the
time of.

(c) t =4 min
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FIG. 8. (Color online) Growth of a finger: a
2.7 cm X 2.7 cm section of the cell is shown for
six different times. During these 10 min the ac-
tive part of the interface, the moving part, was
mainly localized within this section.

(f) t = 10 min

Since the pressure, capillary, and friction forces all act per-
pendicular to the front, particle displacements will be in the
perpendicular direction too, and this will cause distinct par-
ticles to move apart. Note that without mass accumulation,
area conserving stretching would give LR[O(0+50)

—~O(0®)]+LRSO=0. This stretching and the mass accumula-
tion will govern the change of L during a short period of time
ot according to the following equation

oL =

90
O6t— L— o, 18
u cos 0 (18)

where © is the time rate of change of the angle to a given
particle at the front. The first term describes mass accumula-
tion and the last term describes the effect of stretching. Since
SL is a co-moving quantity, i.e., it measures the front width
at a position fixed to a particle, we must write

—=0— (19)

in steady state. Combining this expression with Eq. (18) and
grouping terms we get

JOL) @
= 2
P 1_qsucos@), (20)
or, by integration
OL= ¢ usin 0. (21)
1-¢

Working out @ =50/ &t is straightforward. From the figure it

is seen that R.60@=udt sin O, and therefore O=usin O/ R.,
and
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FIG. 10. An advancing fjord is characterized by two lengths, the
radius of curvature at the tip R. and the half width at the straight
regions R.

- iRc. (22)

1-¢

This simple result shows that a circular front accumulates
mass onto a compacted layer of constant thickness, as long
as the front motion is given by forces in the normal direction
to the interface. The fact that L takes the above form after the
front has passed, however, follows directly from mass con-
servation. The above proof goes to demonstrate that L may in
fact be constant along the front.

B. Force balance

Note that a larger AP is required to overcome the capil-
lary pressure drop y/R, at the tips than along the straighter
sides of the fjords. We therefore model the advancing fjord
as shown in Fig. 10 which shows a widening of the fjord
behind a tip of constant curvature.

Taking a=1 and tan =1 here and throughout, we may
then write the force balance on the front as

A 2ukL
Apg%[@wl)exp(f;—g)_l}g. 23)

At points where the front is moving the “<” sign is replaced
by equality. Local conservation of mass again gives

r=—2 g (24)

“1-s

where L' is the front width along the straight segments. The
characteristic wavelength of the maze pattern is then identi-
fied as the average fjord plus land width and may be written

2
A=2(R+L')=—R. 25
R+L)=1=5 (25)
The fact that the fluid pressure drop must be the same
across straight and curved segments of the interface allows
us to write
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Stresses on front

FIG. 11. A sketch of the stresses acting across the front as a
function of the radius of curvature R, at the advancing tip. The solid
line shows the surface tension pressure, the long-dashed line shows
the frictional stress, and the short-dashed line shows their sum. The
dotted line shows the pressure difference AP needed to move the
front.

A
Apo 8PA
2K

2
(e + l)exp<ﬁ) - 1] + % (26)

for the pressure drop across the finger tips, and for the
straight segments

c

gpAz 2uKpR

AP = P {(K,u+l)exp(AZ(1_¢)> 1] (27)
The experiment will start by a steady increase in AP before
the front starts to move. A fjord, or finger, with a small value
of R, will have to overcome a large capillary pressure differ-
ence, while a large value of R, will imply a large value of the
front thickness and thus a large friction force. As AP is in-
creased from 0, there will initially be no motion. Then a fjord
will form with a radius that minimizes the opposing forces,
as is illustrated in Fig. 11. This radius will thus minimize
AP(R,) as given by Eq. (26), i.e.,

IAP
— =0, (28)
IR,

which may be written
( AL-¢) )”2 ( KPR,
R=\—7—""—7] exp|l-———
gpud(ku+1) Az(1 - ¢)
This equation in R, has the solution

R.= Az(1- qs)w[(
Kiseh

) @

’Y,U«K2<f> )1/2]
gp(l = P)(kp+1)(A2)*) |
(30)

where W is Lambert’s W function, i.e., the inverse function
of y=xe".

By equating the right hand sides of Egs. (26) and (27) we
may solve directly for R in terms of R.. The result is more
instructive, however, if we also use Eq. (28) to simplify it.
Equation (28) may also be written as

Y _p 8P+ ( 2uKdR,
- P Az(1 - ¢)

Rc ‘ 1- ¢
Using this expression to get rid of the /R, term the equality
of the right hand sides of Egs. (26) and (27) takes the form

). (31)
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30%

Az =0.6 mm

@@

FIG. 12. (Color online) Top two figures: Experimental and simulated structures at different volume fractions and a constant plate
separation of 0.4 mm. The volume fraction of grains in the mixture increases from left to right as labeled in the pictures. Bottom two figures:
Experimental and simulated structures for different plate separations with ¢ kept constant at 20%. In the experiments, the dimensions of each
picture frame are 40 X 40 cm.

0.3mm 0.4mm

( 2uKkdR,. ) ( 2uKdR, )
1 exp =e

2ukdR )
BT Yy A AT Y

Xp( (1-p)Az
(32)

which immediately reduces to

Az(1-¢)

2 R
ReR + 2pKdR,

¢ 2uKd n(l " (1- ¢)AZ)' (33)

This result shows that the difference between R and R, is
proportional to Az. In other words, the displacement between
the front of constant curvature and the flat front, as is as-
sumed in the theoretical model and illustrated in Fig. 10, is
proportional to the plate separation. This is no big surprise,
of course, as the friction force increases exponentially over
the characteristic scale of Az. However, the remaining factors
in the Az term are so large that it cannot be neglected. For
instance, for the typical parameter values ¢=0.2, Az
=0.4 mm, =047, k=0.8, R.=1 cm, the above formula
gives R=R.+9.3Az=(1+0.37) cm.

The wavelength A now follows directly from Eq. (25) and
may be written

1.0mm

A

2R, Az <1+(2“ KOR, ) (34)

“1-¢ " uxe "\ T (- p)Az

This is the result we will use for the comparison with experi-
ments and simulations.

V. RESULTS AND COMPARISON

As a general observation, the labyrinth patterns are each
defined by a single characteristic length scale that is uniform
throughout the space filled by the structure. The pattern
forming process is a result of local mass transport, and since
no pinch-off of the interface occurs during the experiment,
the interface remains, topologically, a deformed circle. Con-
sequently, both the fingers and grain cluster are simply con-
nected. The randomness seen in the final pattern arises from
the symmetry breaking associated with fingers turning left or
right as the patterns are formed. Although disorder is present
in the experiment, simulations with no initial disorder (other
than the floating point round-off errors intrinsic to the calcu-
lations) show that the disorder in the final pattern is a result
of chaos, at least in the sense of sensitivity to the initial
conditions in the local packing fraction.

Figure 12 shows the structures at different volume frac-
tions and plate separations. The observed decrease in the
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FIG. 13. Wavelength as function of volume fraction.

length scale of the pattern with increased volume fraction is
reproduced in the simulations. Using image analysis we iso-
late the cluster of grains in each picture and measure the
characteristic wavelength

_ 2Adisc
= _S s

A (35)

where S is the circumference of the cluster of grains and A 4,
is the area of the initial circular disc of fluid. The measured
wavelength for the experiments with lowest and highest vol-
ume fraction is 40.1 and 9.6 mm, respectively. The measure-
ments also show a slight thickening of the branches with
increasing volume fraction.

In Fig. 13 A is shown as a function of mass fraction ¢,
and in Fig. 14 A is shown as a function of Az. The visual
resemblance between the experiments and simulations is
generally convincing, and a strong indication that the main
mechanisms at play are in fact well captured by the model.
The most convincing result is that the overall ¢ dependency
is very similar for the two cases.
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FIG. 14. Wavelength as function of plate separation.
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X

2R

FIG. 15. Sketch of a straight and a curved fjord segment.

However, we note discrepancies between model and ex-
periments at small ¢ and large Az. The effective friction
coefficient in the confined granular system is inherently dif-
ficult to estimate accurately, and we have therefore used a
value (u=0.47) that fits the experimental results at high vol-
ume fraction. As we have noted above, there is also some
uncertainty linked to the value of y. The effect of impurities
in the system is to lower the surface tension, and we
have chosen the value y=0.060 N/m, which is somewhat
lower than pure water (0.072 N/m) and pure glycerol
(0.064 N/m).

At low ¢ the simulations produce somewhat higher A
values than in the experiments, possibly due to the friction
law providing a less accurate description when the width of
the compact layer L becomes comparable to the plate spac-
ing. It is possible that the friction becomes larger for thinner
layers (thus giving smaller A values) because the internal,
rolling degrees of freedom are suppressed. In the simulations
the circumference is largely intact, while in the experiment
there is more fine scale structure, in particular along the ex-
ternal perimeter. This is most likely caused by a larger noise
level in the experimental packing density than in the simula-
tions. The discrepancy at high plate spacing is mainly attrib-
uted to an additional effect that becomes noticeable in the
experiments as the plate separation approaches the capillary
length of the fluid: the meniscus is no longer able to move
the granular layer as a whole, and leaves behind a monolayer
of beads on the lower plate. This layer is visible in the pic-
tures for Az=0.8 and 1.0 mm. As a result, the experiments at
high plate spacing are less well defined, and a high uncer-
tainty is associated with the measured wavelengths. Apart
from this, the quantitative agreement between simulations
and experiments is satisfactory throughout.

While the simulations and theory are based on the mini-
mization of the same force function, the theory contains none
of the geometric complexity that emerges from the simula-
tion model. Hence the agreement between the two indicates
that the length scale is insensitive to the tortuosity of the
patterns. This may be understood—at least in part—from the
operational definition of A, Eq. (35), and the way it measures
the same fjord width in curved and straight segments. Figure
15 shows the areas of a straight fjord segment, and a segment
that curves an angle of 7. The area of the first segment is
A=2X(R+L) with a corresponding circumference S=2X. For
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the curved segment A=2m(R+L)?> with a corresponding cir-
cumference S=2m(R+L). In both cases the definition of Eq.
(35) gives A=2(R+L). This means that the A measurements
from simulations are suited to reproduce the theoretical pre-
diction, also when they come from curved segments.

VI. CONCLUSION

In conclusion we have explained a pattern forming drying
process in terms of only two competing forces, the capillary
and friction forces. As such the process appears very simple.
Yet, it displays intriguing geometric complexity, character-
ized by randomness that emerges from the sensitivity to ini-
tial conditions in the dynamics of the system. The patterns
are mazes, and since the solid phase is simply connected in a
topological sense, there is always a way out of the maze.

The structure of the solid phase is compact, i.e., it has a
constant average mass density on length scales larger than A.
However, this does not prevent the structure from being a
nontrivial hierarchical branch structure. Work is in progress
in our group to study the scaling behavior of this branching
structure.

The agreement between the experiments and the simula-
tions is very good apart from some extreme points, i.e., the
largest plate separation (Fig. 14) and the smallest volume

PHYSICAL REVIEW E 77, 021301 (2008)

fraction (Fig. 13). In the latter situation the length L becomes
comparable to the plate separation, and we expect our mod-
eling of the granular stress (Fig. 5) to be less accurate. In
addition, the hydrostatic effects, which are neglected in the
simulations, become increasingly important for large plate
separations.

More precisely, the simulations follow the motion of the
entire particle front as it deforms, gathers more mass on its
way, and stretches, until the whole system is drained. Run-
ning series of simulations has allowed us to confirm the the-
oretical understanding of the problem as well as to span pa-
rameter space, identifying and investigating the dependence
on central parameters in the problem.

The visual similarity between the present labyrinth pat-
terns and patterns observed in biological systems, such as
brain corals, ferrofluids injection processes, and reaction-
diffusion systems, raises the intriguing question of a deeper,
more general connection.
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